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1 Dimension of Covariant Rings and Chevalley’s Theorem

1.1 Dimension of covariant rings

Last time we talked about invariant rings. Let G � Kn, where K is a field with charac-
teristic 0, and let R = K[x1, . . . , xn] be the polynomial ring in n variables. Then RG is
the ring of invariant polynomials. We also have IG = (RG

+), the ideal generated by the
invariants with 0 constant term. We can form the coinvariant ring R/IG, in which the only
invariant elements are constants. We also proved the following lemma:

Lemma 1.1. The homogenous fi ∈ RG
+ generate RG as a K-algebra iff they generate IG

as an ideal.

Proposition 1.1. Assuming the action G � Kn is faithful,

dimK R/IG ≥ |G| .

Proof. We claim that homogenous basis X of R/IG (picking the representatives for the
cosets) will generate R as an RG-module. We want to show that RG ·X = R. Let f ∈ R
be f =

∑
ciai +

∑
ϕjgj , where gj ∈ RG

+. By induction, ϕj ∈ RG ·X.
Find a v ∈ Kn such that |G · v| = |G|. R needs at least |G| generators to generate even

this orbit.

Example 1.1. Let G = {±1} � K2 by scalar multiplication by ±1, and let R = K[x, y].
RG is the set of even polynomials, K[x2, xy, y2]. Also, IG = (x2, xy, y2). R/IG has a basis
{1, x, y}. So dim(R/IG) = 3 > 2 = |G|.

This is not a Coxeter group! Abstractly, the group is, but the action is not the Coxeter
group action.

Example 1.2. Let Sn � Rn. R = R[x1, . . . , xn], RSn = R[e1, . . . , en], and IG = (e1, . . . , en).
ISn is a complete intersection ideal, so dim(R/ISn) =

∏
deg(ei) (although we will not di-

gress to prove this here. So dim(R/ISn) = n! = |Sn|. In fact, R is a free module of rank
n! = |Sn| over RSn .
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1.2 Chevalley’s theorem and consequences

Theorem 1.1 (Chevalley). If G � Rn is a Coxeter group, then

1. RG is a polynomial ring.

2. IG is a complete intersection ideal.

3. R is a free RG-module (of rank |G|) with basis any R-bases of R/IG.

4. dimR/IG = |G|.

Before we prove this, let’s go over some consequences. Define the generating function

HR/IG(q) :=
∑
d

dim(R/IG)qd.

We also have that

HR(q) =
1

(1− q)n
,

HRG(q) =
1

(1− q)(1− q2) · · · (1− qn)
,

since 1, 2, . . . , n are the degrees di or e1, . . . , en.
So HR = HRGHR/IG because

HR/IG(q) =
1− q

1q

1− q2

1− q
· · · 1− qn

1− q
= [1]q[2q] · · · [n]q = [n]q!

In Sn, `(w) is the number of inversions. So we can say

HR/ISn
(q) =

∑
w∈Sn

q`(w).

When Sn � Rn, this is a degenerate action. Let R = R[u1, . . . , un−1] = R/(e1). Let
R̃Sn = RSn = R[e2, . . . , en]. Then R̃/ĨG ∼= R/IG. So e1 is the generator for the degenerate
part.

S2 � R is actually the action of {±1}. So our example before was Sn � R ⊕ R. Let
Sn � Rn−1 (or Rn), and call this V . Then Sn � V ⊕ V and, remarkably, dim(R/ISn =
(n+ 1)n−1. This is a deep fact! This is the number of rooted trees on n+ 1 vertices. There
is no known simple proof of this.
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